# 2.10: Chapter 2 Formula Review

$$\newcommand{\vecs}{\overset { \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}{\| #1 \|}$$ $$\newcommand{\inner}{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}{\| #1 \|}$$ $$\newcommand{\inner}{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$$$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

## 2.2 Measures of the Location of the Data

$$i=\left(\frac{k}{100}\right)(n+1)$$

where $$i$$ = the ranking or position of a data value,

$$k$$ = the $$k$$th percentile,

$$n$$ = total number of data.

Expression for finding the percentile of a data value: $$\left(\frac{x+0.5 y}{n}\right)(100)$$

where $$x$$ = the number of values counting from the bottom of the data list up to but not including the data value for which you want to find the percentile,

$$y$$ = the number of data values equal to the data value for which you want to find the percentile,

$$n$$ = total number of data

## 2.3 Measures of the Center of the Data

$$\mu=\frac{\sum f m}{\sum f}$$ Where $$f$$ = interval frequencies and $$m$$ = interval midpoints.

The arithmetic mean for a sample (denoted by $$\overline{x}$$) is $$\overline{x}=\frac{\text { Sum of all values in the sample }}{\text { Number of values in the sample }}$$

The arithmetic mean for a population (denoted by μ) is $${\mu}=\frac{\text { Sum of all values in the population }}{\text { Number of values in the population }}$$

## 2.7 Measures of the Spread of the Data

$$s_{x}=\sqrt{\frac{\sum f m^{2}}{n}-\overline{x}^{2}} \text { where }$$ $$\begin{array}{l}{s_{x}=\text { sample standard deviation }} \\ {\overline{x}=\text { sample mean }}\end{array}$$

Formulas for Sample Standard Deviation $$s=\sqrt{\frac{\Sigma({x}_i-\overline{x})^{2}}{n-1}} \text { or } s=\sqrt{\frac{\Sigma {f}_i({x}_i - \overline{x})^{2}}{n-1}}$$

For the sample standard deviation, the denominator is n - 1, that is the sample size - 1.

Formulas for Population Standard Deviation $${\sigma}=\sqrt{\frac{\Sigma({x}_i - \mu)^{2}}{N}} \text { or } \sigma=\sqrt{\frac{\Sigma {f}_i({x}_i - \mu)^{2}}{N}}$$

For the population standard deviation, the denominator is N, the number of items in the population.

This page titled 2.10: Chapter 2 Formula Review is shared under a CC BY license and was authored, remixed, and/or curated by .