Skip to main content
Business LibreTexts

15.12: Problems

  • Page ID
    94743
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)
    1.
    You purchase 100 shares of COST (Costco) for $280 per share. Three months later, you sell the stock for $290 per share. You receive a dividend of $0.57 a share. What is your total dollar return?
    2.
    You purchase 100 shares of COST for $280 per share. Three months later, you sell the stock for $290 per share. You receive a dividend of $0.57 a share. What are your dividend yield, capital gain yield, and total percentage return?
    3.
    You purchase 100 shares of COST for $280 per share. Three months later, you sell the stock for $290 per share. You receive a dividend of $0.57 a share. What is the EAR of your investment?
    4.
    You invest in a stock for four years. The returns for the four years are 20%, -10%, 15%, and -5%. Calculate the arithmetic average return and the geometric average return.
    5.
    You are considering purchasing shares in a company that has a beta of 0.9. The average return for the S&P 500 is 11%, and the average return for US Treasury bills has been 2%. Based on the CAPM, what is your expected return for the stock?
    6.
    Your portfolio has had a 15% rate of return with a standard deviation of 18% and a beta of 1.1. The average return for the S&P 500 has been 11%, and the average return for US Treasury bills has been 2%. Calculate the Sharpe ratio, Treynor ratio, and Jensen’s alpha for your portfolio.
    7.
    The monthly returns for Visa (V) and Pfizer (PFE) for 2018–2020 are provided in the chart below. In addition, the monthly return for the SPDR S&P 500 ETF Trust (SPY) is provided; SPY is often used as a proxy for the returns of the S&P 500, or a broad market index. Using Excel, calculate the arithmetic average monthly returns for V, PFE, and SPY. Also, calculate the standard deviation of returns for each of V, PFE, and SPY.

    Monthly Returns for SPY, V, and PFE for 2018–2020

    Date SPY V PFE
    Jan-18 0.0618 0.0895 0.0226
    Feb-18 -0.0364 -0.0104 -0.0197
    Mar-18 -0.0313 -0.0253 -0.0135
    Apr-18 0.0092 0.0607 0.0316
    May-18 0.0243 0.0303 -0.0186
    Jun-18 0.0013 0.0149 0.0196
    Jul-18 0.0417 0.0324 0.1006
    Aug-18 0.0319 0.0742 0.0398
    Sep-18 0.0014 0.0233 0.0705
    Oct-18 -0.0649 -0.0816 -0.0229
    Nov-18 0.0185 0.0280 0.0736
    Dec-18 -0.0933 -0.0673 -0.0485
    Jan-19 0.0864 0.0233 -0.0275
    Feb-19 0.0324 0.0971 0.0301
    Mar-19 0.0136 0.0563 -0.0203
    Apr-19 0.0454 0.0528 -0.0438
    May-19 -0.0638 -0.0189 0.0224
    Jun-19 0.0644 0.0774 0.0526
    Jul-19 0.0201 0.0256 -0.1034
    Aug-19 -0.0167 0.0158 -0.0847
    Sep-19 0.0148 -0.0473 0.0201
    Oct-19 0.0268 0.0398 0.0679
    Nov-19 0.0362 0.0316 0.0039
    Dec-19 0.0240 0.0201 0.0270
    Jan-20 0.0045 0.0589 -0.0495
    Feb-20 -0.0792 -0.0865 -0.0934
    Mar-20 -0.1300 -0.1123 -0.0233
    Apr-20 0.1336 0.1092 0.1752
    May-20 0.0476 0.0924 -0.0044
    Jun-20 0.0133 -0.0089 -0.1352
    Jul-20 0.0636 -0.0143 0.1768
    Aug-20 0.0698 0.1134 -0.0083
    Sep-20 -0.0413 -0.0553 -0.0288
    Oct-20 -0.0210 -0.0913 -0.0332
    Nov-20 0.1088 0.1576 0.1381
    Dec-20 0.0326 0.0414 -0.0293
    Table 15.8
    8.
    Using the monthly returns provided in the table in problem 7, use Excel to calculate the beta for V and the beta for PFE. Which of these stocks has more systematic risk? What would you expect for the comparative returns of V and PFE?

    This page titled 15.12: Problems is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform.

    • Was this article helpful?