Skip to main content
Business LibreTexts

7.5: Exercises

  • Page ID
    138320
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\dsum}{\displaystyle\sum\limits} \)

    \( \newcommand{\dint}{\displaystyle\int\limits} \)

    \( \newcommand{\dlim}{\displaystyle\lim\limits} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Part A: Conceptual Questions

    Classification Trees

    1. Explain the concept of information gain and its role in building classification trees.
    2. What is Gini impurity, and how is it used to determine splits in decision trees?
    3. Compare entropy and Gini impurity. When might one be preferred over the other?
    4. Define overfitting in the context of classification trees. How can it be avoided?
    5. What role does pruning play in decision tree models?
    6. Describe how missing values are handled in classification trees.
    7. How does a decision tree handle categorical vs. continuous predictors?
    8. What are the limitations of decision trees for classification tasks?
    9. Discuss the trade-off between tree depth and prediction accuracy.
    10. Why might a random forest perform better than a single classification tree?

    Regression Trees

    1. What is the main splitting criterion used in regression trees?
    2. Explain how mean squared error (MSE) is used in regression tree building.
    3. Compare regression trees and linear regression. In what situations might a regression tree perform better?
    4. What are the risks of building very deep regression trees?
    5. What does pruning accomplish in a regression tree?
    6. How do regression trees handle outliers in the target variable?
    7. How are missing values treated in regression trees?
    8. Discuss the use of regression trees in time series forecasting.
    9. Can regression trees handle multicollinearity? Why or why not?
    10. How is prediction made at the leaves of a regression tree?

    Part B: Interpretation Questions

    Classification Trees

    1. Interpret the meaning of a leaf node that classifies most instances as 'No Churn'.
    2. Explain what a split on 'Age > 35' indicates in a decision tree.
    3. If a model has high training accuracy but low test accuracy, what does this suggest?
    4. How do you assess feature importance from a decision tree model?
    5. What does it mean if two branches have similar accuracy but very different depths?

    Regression Trees

    1. Explain how to interpret the predicted value at a leaf node in a regression tree.
    2. A regression tree has a split on 'Sales Volume > 1000'. What does this mean in business terms?
    3. If pruning reduces MSE on the test set but not on the training set, what does this imply?
    4. How do you interpret the importance of features in a regression tree?
    5. Why might the model suggest similar predicted values for different input paths?

    Part C: Hands-On Data Exercises

    Classification Tree Applications

    1. Marketing: Predict whether a customer will respond to a promotion using age, income, prior purchases, website visits, and social media engagement. (Dataset: classification_tree_app_1.xlsx)
    2. Finance: Classify loan applicants as 'Approved' or 'Denied' based on credit score, income, debt-to-income ratio, employment status, and past delinquencies. (Dataset: classification_tree_app_2.xlsx)
    3. Operations: Predict whether an order will be delivered late using shipping method, delivery distance, number of items, product weight, and time of order placement. (Dataset: classification_tree_app_3.xlsx)
    4. Sales: Predict whether a sales lead will convert using variables such as industry, lead source, sales rep experience, contact frequency, and region. (Dataset: classification_tree_app_4.xlsx)
    5. Customer Service: Classify complaint type using service ticket category, issue description, channel of contact, customer tenure, and service history. (Dataset: classification_tree_app_5.xlsx)
    6. Quality Control: Predict product defect classification using shift time, machine ID, operator experience, batch temperature, and pressure levels. (Dataset: classification_tree_app_6.xlsx)
    7. Credit Risk Management: Classify clients as low, medium, or high risk using financial ratios, payment history, account age, credit utilization, and number of recent inquiries. (Dataset: classification_tree_app_7.xlsx)
    8. Entertainment: Predict whether a user will skip a video ad using genre, video length, prior skips, time of day, and ad relevance rating. (Dataset: classification_tree_app_8.xlsx)
    9. Manufacturing: Predict machine failure category using vibration level, run time, humidity, load pressure, and last maintenance date. (Dataset: classification_tree_app_9.xlsx)
    10. Accounting: Classify transactions as legitimate or potentially fraudulent using transaction amount, frequency, category, location, and account history. (Dataset: classification_tree_app_10.xlsx)

    Regression Tree Applications

    1. Marketing: Predict customer lifetime value using acquisition channel, age, purchase frequency, recency, and total spend. (Dataset: regression_tree_app_1.xlsx)
    2. Finance: Estimate stock price using daily return, volume, moving averages, volatility index, and macroeconomic indicators. (Dataset: regression_tree_app_2.xlsx)
    3. Operations: Predict delivery time using variables such as delivery distance, vehicle type, weather conditions, package size, and order time. (Dataset: regression_tree_app_3.xlsx)
    4. Sales: Predict monthly sales revenue from sales team size, ad spend, regional demand, competitor pricing, and seasonal factors. (Dataset: regression_tree_app_4.xlsx)
    5. Customer Service: Estimate average resolution time using issue type, channel, agent experience, priority level, and time to first response. (Dataset: regression_tree_app_5.xlsx)
    6. Quality Control: Predict number of defects using production speed, shift, material type, temperature, and humidity. (Dataset: regression_tree_app_6.xlsx)
    7. Credit Risk Management: Predict expected loss amount using borrower income, loan term, credit score, payment history, and current debt. (Dataset: regression_tree_app_7.xlsx)
    8. Entertainment: Predict daily streaming minutes per user using plan type, device type, preferred genres, historical usage, and subscription tenure. (Dataset: regression_tree_app_8.xlsx)
    9. Manufacturing: Estimate equipment maintenance cost using machine age, usage hours, energy consumption, failure history, and technician notes. (Dataset: regression_tree_app_9.xlsx)
    10. Accounting: Predict monthly expenses using number of transactions, business unit, prior period expenses, budget allocation, and seasonal adjustments. (Dataset: regression_tree_app_10.xlsx)

    This page titled 7.5: Exercises is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Elbert L. Hearon, M.B.A., M.S..

    • Was this article helpful?