4.5: Chapter 6 Formula Review
- Page ID
- 51787
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)
Introduction
\(X \sim N(\mu, \sigma)\)
\(\mu =\) the mean; \(\sigma =\) the standard deviation
The Standard Normal Distribution
\(Z \sim N(0, 1)\)
\(z = a\) standardized value (z-score)
mean = 0; standard deviation = 1
To find the \(k^{\text{th}}\) percentile of \(X\) when the z-scores is known:
\(k = \mu + (z)\sigma\)
z-score: \(z=\frac{x-\mu}{\sigma}\) or \(z=\frac{|x-\mu|}{\sigma}\)
\(Z =\) the random variable for z-scores
\(Z \sim N(0, 1)\)
Estimating the Binomial with the Normal Distribution
Normal Distribution: \(X \sim N(\mu, \sigma)\) where \(\mu\) is the mean and \(\sigma\) is the standard deviation.
Standard Normal Distribution: \(Z \sim N(0, 1)\).